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ABSTRACT

Length analyses of Pacific salmo@ncorhynchus spp.) on the west coast of North America
typically rely on fork length (FL) measurements. Caogredy, size limits for many salmon
fisheries are specified in terms of total length (TLYhe use of total length in fishery
regulations has two ramifications: (1) results froralgses of sample data must be converted
to total length prior to implementation as regulatiogasg (2) fishery size limits must be
converted to fork length prior to analysis by modelsciwhpredict the effect of proposed
management regimes upon fish stocks. Accurate formul@efwerting from FL to TL, and
from TL to FL, are required by fishery managers.

This study uses fork length and total length data for ckinsalmon(O. tshawytscha)
collected by the Washington Department of Fish and Weildind the Northwest Indian
Fisheries Commission to estimate the relationshgigvidéen these two measures of length.
Three models were considered for estimating the coover®rmulas: simple linear
regression, geometric mean regression, and an errgesiables model. The geometric
mean regression model is the method of choice irsth@dy because the results are symmetric
and the model accounts for errors in both variablds®e geometric mean regression model is
shown to be a special case of an errors-in-variabtesel.

Analysis of covariance found that the relationshipMeen fork length and total length was
significantly different among the four data sets analymben the entire range of length data
was considered (35 cenFL < 80 cm). Our analyses determined that if the data weidedi
into two length ranges, the hypothesis of equal slopeth&FL:TL relationship among the
data sets could not be rejected. The two length ranges 1) 35 cnx FL < 68 cm; and
(2) 68 cm= FL < 80 cm.

The following relationships, based on the geometricrmregression model, for converting
from fork length to total length, or total length takdength, are recommended.

When converting from FL to TL, for lengths in the garof 35 cnx FL < 68 cm:
TL =1023+(1045L)

and for lengths in the range of 68 enrL < 80 cm:
TL =1488+ (LO32FL).

When converting from TL to FL, for lengths in thtenge of 37 cr& TL < 72 cm:
FL = (0.957TL)—- Q979

and for lengths in the range of 72 enfL < 84 cm:
FL = (0.969TL) — 1442 .

These conversions necessitate changes in the garameed in fishery regulation assessment
models. Also, the effectiveness of the curreng¢ $mits in some fisheries may need to be
reassessed if the size limit was based upon prevmk length to total length conversion
models.
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INTRODUCTION

Minimum and maximum size limits are frequently used inefiges management to regulate the
catch. Selection of a size limit may be based upogtheage relationships, length-weight
relationships, length histograms, or other analysdsngth data. The fork length (FL) is the
preferred measurement standard for Pacific salr@maegfhynchus spp.) due to the ease with
which it may be measured (PSC 1989) and its reduced séysitalative to the total length,
to the effects of caudal fin fraying and erosion (Bab2838).

Salmon fisheries under the jurisdiction of the Padifghery Management Council (PFMC),
and state and tribal salmon fisheries in Washingtaeg@n, and California have size limits
specified in total length (TL). Because total lengtteswsed in fishery regulations, the results
from analyses of sample data must often be convertéotablength prior to implementation.
Also, fishery size limits in total length must be werted to fork length prior to analysis by
models that predict the effects of proposed managememeaggipon fish stocks.

Formulas which accurately convert fork length to téagth (and total length to fork length)
are necessary for accurate modeling of fisheries Veitigth-based retention regulations.
Fishery managers in Washington State have not agreed lemgth conversion formula for
chinook salmon@. tshawytscha). One of the current conversion formulas used isdbasea
simple linear regression and data collected from thehivgt®n coastal troll fishery in 1953
[Appendix 1 in Reed (197%) This conversion formula is thought to overestimatal length
because the total length was collected by forcing suelal peduncle down so that the tip of
the caudal fin was aligned with a meter stick (Dr. Sokg Washington Department of Fish
and Wildlife, personal communication). More fork lengthd total length data have been
collected during the past decade. For these data, sampiesistently measured total length
with the tail in its natural position. This paper gnak these new data and evaluates three
different linear statistical models for their effsetess in describing the relationship between
fork length and total length (FL:TL relationship).

! This work was reported by the Pacific Marine FisteCommission (PMFC) and is subsequently referred to
as the PMFC model.



METHODS

The data consisted of pairs of length measurementsifrdimdual fish. Each measurement
pair consisted of a fork length and a total length measeme Four data sets were analyzed.
Descriptions of each data set and the abbreviationtosedder to each set subsequently in the
report follow:

Set 1. Data collected by the Washington Departmenisbf &d Wildlife (WDFW)
in January through December of 1987, consisting of 3,273 length
measurement pairs from chinook salmon collected during egsinof
recreational hook-and-line fisheries in Puget Sound é&ddied as
WDFW87);

Set 2. Data collected by the Northwest Indian Fiske@emmission (NWIFC) in
March 1987, consisting of 98 length measurement pairs fraroak salmon
harvested with troll gear by treaty Indians at Porgdles and Neah Bay
(abbreviated as NWIFC87);

Set 3. Data collected by WDFW in September and Octob&©94, consisting of
203 length measurement pairs from chinook salmon landed quuisg seine
test fisheries for coho salmo®.(kisutch) at Apple Cove in Puget Sound
(abbreviated as WDFW94); and

Set 4. Data collected by WDFW in September and Octob&©95, consisting of
378 length measurement pairs from chinook salmon landed quuisg seine
test fisheries for coho salmon at Apple Cove and Edwapdint in Puget
Sound (abbreviated as WDFW95).

Initial Data Analysis

All measurements made by the WDFW were in centimgt@mg and recorded to the nearest
cm. The measurements made by the NWIFC were insnehé recorded to the nearest'1/8
these measurements were converted to cm prior toseaBefore analysis, each data set was
screened for possible recording errors. All data pamsrevthe fork length was greater than
the total length were considered recording errors andvednfrom the data. The difference
between total length and fork length (TL - FL) was chaled for each data pair. Differences
between total length and fork length greater than 10 dm- (fL > 10 cm) were extremely
rare in the data (15 pairs out of 3,952 total pairs). Thass were considered outliers and
were removed from the data, also.

After we had screened each data set, the mean, statelaation, coefficient of variation, and
range (minimum value to maximum value) for each set wateulated for the variables of
interest: fork length, total length, and differencewsssn the two (TL - FL = DIFF). In

addition, the parametric Pearson’s correlation coeffic() was calculated between FL and



TL and between FL and DIFF. Length frequency histograere used to compare the fork
length data from each data set. Frequency histograms also used to compare the
distribution of values for DIFF from each data set.

Comparison of Data Sets

Since the biological relationship between fork lengtl #otal length is not well understood,
we limited the range of lengths analyzed to those tefast for fishery management. This
prevents lengths outside the range of interest fromending the functional relationship
estimated between fork length and total length and shdold for more accurate estimates of
the FL:TL relationship for lengths within the rangéurrent length limits range from about 35
cm to 80 cm. Therefore, all data pairs with a fork largss than 35 cm or greater than 80 cm
were removed from each data set. Scatter plots wezd ts examine the bivariate
relationship between the different variables in #duced data sets.

A determination of the error structure of the data veagiired to select the proper model for
analysis. If the variance structure is homoscedésigcvariance of th¥ data is constant over
the range of theX data) the error structure is normal. If the variasteicture is
heteroscedastic (the variance of thelata is not constant over the range of Xhdata) the
error structure is usually log-normal. We divided the Ftada the range from 3&m to 80
cm into one 5-cm and four 10-cm intervals. The mean siaddard deviation of the
corresponding total lengths within each of the lengtérwals was calculated to examine the
variance structure of the FL:TL relationship. Boxésttand Levene’s test for the homogeneity
of variance (Millken and Johnson 1992) were conducted ertdtal length data within the
fork length categories. Both of these tests are raiougepartures from normality (Milliken
and Johnson 1992).

Our first step in examining the FL:TL relationship wasdetermine if it was appropriate to
combine the four data sets. If the relationship bebwel and TL is different among the four
data sets it is not appropriate to combine them tonati an overall FL:TL relationship. We
used a simple linear model and analysis of covarianblC@VA) to determine if the FL:TL
relationships were similar among the four data setse dssumptions required for the simple
linear regression model are described in the nextosedt this report. Use of the linear
regression model allowed us to use analysis of covaridmcsimultaneously compare the
FL:TL relationships among the data sets (Miliken andindon 1996). We followed
procedures outlined by Millken and Johnson (1996) to condecANMCOVA. We are not
aware of similar procedures that could be used with ther ahodels examined in this report.
Because the linear model fit the data well, we do wmpeet that its use introduced any errors
into our analysis or biased our conclusions.



Models

Three models were considered for estimating the FLE@Id TL-to-FL conversion
equations:

» simple linear regression (SLR) model;
* geometric mean regression (GMR) model; and
* errors-in-variables (EIV) model.

Schnute (1984) identified three fundamental properties thatldtbe satisfied by a model
expressing the relationship between bivariate datay @re:

* the results should symmetricXhand;

» the results should be scale independent; and

* the results should be robust to clusters of samples towiéher end of the
distribution.

A regression-type model is symmetricdrandY if the estimated slope for the regressiory of
on X is the reciprocal of the slope estimate for Xaen-Y regression. For example, a FL can
be converted to TL using the results of a FL-on-TL regjos. This predicted TL can then be
converted back to a FL using the results of the TL-orrdglression. In a symmetric model,
this predicted FL will be the FL that was initially dsén the FL-on-TL regression. If the
model is not symmetric, the predicted FL will be difféarfom the original FL.

A model is scale independent when the slope estimatedtireX-Y data is not influenced by
the measurement units of the data. For example, ifodems scale independent then a
regression calculated from FL:TL data measured in cetgnnewill result in the same
estimated slope if the data are converted to incheseébahalysis.

Frequently when naturally occurring populations are randeantypled there is a concentration
of observations near one end of the frequency distobubf the observations and
progressively fewer observations toward the other endhere may be several modes in the
frequency distribution scattered throughout the range of ((Rtker 1973). A gooX-on-Y
regression model should be robust (not heavily influended}hese concentrations of
observations.

The major assumptions required for each model and a dscuskithe suitability of each
model to the FL-to-TL conversion problem follow.



Simple Linear Regression Model:

The simple linear regression model is the most widedyl usethod because of ease of use and
familiarity to most people. The parameters of theplntinear regression model are usually
estimated by the method of least squares (Draper ant $88tl). Because the methods used
to estimate the parameters of a SLR are describedait idemost introductory statistical texts
they are not presented here. The four major assumptémpsred for a SLR model are
(Draper and Smith 1981):

1. The relationship between the(independent) and (dependent) variables can be
described by a linear function;

2. For any value oK, the correspondiny values are independently and normally
distributed and this distribution has been sampled at rgndom

3. The variance ofY is the same for any value of, i.e., the variances are
homoscedastic; and

4. The independerX variable is measured without error relative to the deéestY
variable.

There are two primary criticisms of simple linear esgion as a model for length measurement
conversions. The first is the SLR model is not sytmim in X andY (Ricker 1973; Schnute
1984). The SLR model is not symmetric because it asaigpecial role to one variate. If a
given FL is converted to TL with a FL-on-TL regressemd subsequently the TL predicted
from this regression is used in a TL-on-FL regresdiomnew predicted FL will usually not be
the one originally input into the FL-on-TL regressiofhe predicted FL will be larger than the
original FL if it was less than the mean FL of thegimal FL data used to estimate the
predictive regression, or it will be less than theiogl FL if it was greater than the mean FL
of the original data (Ricker 1973). Although the SLR modeddale independent (Schnute
1984), it is not robust to clusters of samples toward rethel of the distribution (Ricker
1973).

The other major criticism of the SLR model concetins fourth assumption (above): the
independeniX variable is assumed to be measured without errorveldi the dependent
variable. Obviously in the FL:TL relationship we egpéhat there is some error in the
measurement of both lengths. We have no basis tamasshat fork length is measured
without error with respect to TL (or vice versa). nieasurement error is present in ¥e
variable (as well as th¥ variable), then least-squares regression estimatébeomodel
parameters (the slope and the intercept) and the essirothe variance of these parameters
will be biased (Fuller 1987).



Geometric Mean Regression Model:

The geometric mean regression was advocated by Ricker (2978)method to incorporate
measurement errors in thevariable into regressions. The GMR model is al$erred to as
the standard (or reduced) major axis method (Jolicoeur 1Risker (1973) stated that the
GMR model is superior to the SLR model when estimatiogversion factors between
different length measurements because “its estimatadagstematic bias related to the range
of lengths represented in the sample”. This is inreshtto a simple linear regression whose
slope estimate tends to increase as the range ofdeingtie sample increases.

The slope of the GMR regression is estimated by tt@ odthe sample standard deviations of
the X andY variables (Ricker 1973). Specifically, the slofgié estimated by (Ricker 1973):

[1]

A . sample standard deviation fof
Bowr = (sign I’){ P }X

sample standard deviation for

and the intercept) by:

J— A

&GMR =Y - (,BGMR X) [2]

where sigrr is the sign £) of the parametric correlation coefficient betweeandY and X
andY are the sample means. Jolicoeur (1990) desdridnego construct confidence intervals

for ,EGMR. The major assumptions of the GMR model propdseRicker are (Ricker 1973;
Schnute 1984):

1. The relationship between thé¢ and Y variables can be described by a linear
function;

2. The X and Y data are mutually independent pairs from a bitarinormal
distribution that has been sampled at random; and

3. There is measurement error present in botiXtwedY variables.

The GMR model has two advantages relative to thB 8ilodel. First, the GMR model is
symmetric inX andY (Ricker 1973; Schnute 1984). Secondly, the GMR ehdgl robust,
relative to the SLR model, to clusters of obseoratiin the frequency distributions of the data
(Ricker 1973). The GMR model is also scale indepan (Kimura 1992).

However, the GMR model “has been the center ofifsignt controversy in the literature”
(Kimura 1992). [Also see, Jolicoeur (1975), Rick&®75), Schnute (1984), and Jolicoeur
(1990) for additional discussions of this contr@ygr One criticism of the GMR model is that



its slope coefficient is inconsistérand this inconsistency can result in bias when measent
error is large and the estimated slope is small (SAr@8®). Also, Jolicoeur (1975; 1990)
demonstrates that the confidence interval for theeststimated from GMR can be too narrow
in many situations, especially when there is not rangt relationship betweeX andy.
Jolicoeur (1990) recommends that the GMR should be restriotthose cases when:

» the analysis is restricted to the original valueshef® andY data (the data are not
log transformed);

» theX andY data have a bivariate normal distribution;

» sample size is at least 20 cases; and

* 1 betweerX andY is at least 0.60.

Errors-In-Variables Model:

Kimura (1992) presents a good discussion of the applicati@nrofs-in-variables models to
allometric problems similar to the FL-to-TL conversiproblem. EIV models are a class of
models that incorporate error in the measurement thf the X andY data. It should be noted
that the GMR model (or standard major axis method)spegial case of the linear functional
regression models applicable to errors-in-variables fegdenura 1992). Models of this type
all require an assumption about the measurement variahdbs X andY data. Either the
measurement variances are assumed to be known or tiheofahe measurement error
variances (called) is assumed known. The parametes defined by:
2

1290

T

where g2 and g% are the measurement error variances forvtaadX data, respectively. In

the bivariate situation, knowledge ®fllows an unbiased estimatorf®fo be constructed and
the application of normal theory for hypothesis testmd confidence interval construction
(Fuller 1987). In the GMR mode\, is assumed to be approximated by the ratio of the sample
variances of thé/ and X data (Jolicoeur 1990; Kimura 1992). The assumptions for tiie El
model are identical to those of the GMR model (remertitet the GMR model is a member
of the same class of models).

The EIV model we examined is often referred to asotionary major axis method (Jolicoeur
1975, 1990; Kimura 1992). For this modelis assumed equal to 1.0. We feel that this is a
reasonable assumption for the FL:TL data as both Isngdre measured in the same units
(primarily cm) and the differences between the twosusaments were relatively small (1 to
10 cm) so the measurements are equal in magnitude. Tieere®® expect that the two types

2 A method of estimation is consistent when thenestiéd value becomes equal to the population value as the
sample size approaches the population size.



of measurements have approximately equal measurement éiraura (1992) states that in
many cases of allometry it is reasonable to as3umé.0.

Fuller (1987) and Jolicoeur (1990) present the maximum likelirestichate for the slope of
this EIV model (B, ):

n (S -AS) s -As) +aA s ]t

ﬁEIV - ZSXY
where, &£ = the sample variance for thedata;
s; = the sample variance for thedata; and
Sy = the sample covariance for tKeY data.

Fuller (1987) and Jolicoeur (1990) describe how to construdideooe intervals for,f:’ElV.
Jolicoeur (1990) recommends this EIV model (ordinary mayis method) when thé-Y data
appear to follow a bivariate log-normal distributionhiSTmodel has been criticized as being

scale dependent. However, Kimura (1992) has shown that Aviseproperly rescaled before
checking the model for scale independence, this forineoEtV model is scale independent.

Schnute (1984) proposed a series of EIV models appropriatevérate data that follow a
log-normal distribution. These models require no expassumption abouk. From our
analyses, we concluded that the FL:TL data more cldetityved a bivariate normal rather
than a bivariate log-normal distribution. Therefdhese models were not investigated further.



RESULTS

Initial Data Analysis

The WDFW87 data set had the highest incidence of poimsicered recording errors (FL
recorded ag TL) or as outliers (DIFF > 10 cm). About one percenthe data pairs were

removed from the WDFW87 data set: 18 data pairs had HL and 15 data pairs had DIFF
> 10 cm. No data pairs were removed from the NWIFC87 aD&#WO4 data sets. One data
pair was removed from the WDFWO95 data set because tinaEk TL.

The mean %), standard deviation (s), coefficient of variationV{C range, and selected
correlation coefficientsr] for each data set for the three variables ofr@steare shown in
Table 1. The WDFW87 data set has the largest mates for all three variables. The
WDFW95 data set had the largest coefficient of atemn for all three variables. The
WDFW87 data set had a broad distribution of fomkgths and no pronounced peak to its
distribution (Figure 1). The NWIFC87 and WDFW94alaets had narrower distributions of
fork lengths and had clear peaks to their frequeligtyibutions. The WDFW95 data set was
skewed to the right with peak frequencies in thellem fork length ranges but with an
extended distribution into the larger fork leng{Rggure 1). The WDFW87 and WDFW94
data sets had similar distributions for DIFF (Feg@): both data sets had peaks in the 3 cm <
DIFF < 4 cm category. The other two data sets (NWIFG&7\WDFW95) had a peak in the
2 cm < DIFF< 3 cm category.

Comparison of Data Sets

There was a strong linear relationship betweenreL EL in all four data sets (seevalues in
Table 1). For the comparison of data sets, the @ate restricted to the range of lengtis
interest, 35cm < FL < 80 cm. The scatter plot of the combined data in this range
demonstrates the strong linear relationship betvweand TL (Figure 3). For this restricted
range of length data;, values between FL and TL ranged from 0.990 to 0.88 the
individual data sets andfor the data combined was 0.996.

The spread of the data in Figure 3 indicates a abemor variance structure for the FL:TL
data. The data are tightly clustered in the valr{f¢-axis) direction throughout the range of
the FL data. Although the spread of the TL valales\g theY-axis expands slightly as the
values of FL increase, thacreasein spreadis relatively small. Excluding the smallest length
category (3= FL < 40 cm), the standard deviations of TL in the otleer FL categories
range from 2.95 to 3.15 (Table 2). When the sisiallength category is included in the
analysis, both Box’s and Levene’s tests for the ¢geneity of variances are rejected (bBtk
0.001). When the smallest length category is echiftom the analysis, neithéest for the
homogeneity of variances is rejected (bBth 0.100).




Table 1. Sample size (n), mear)( standard deviation (s), coefficient of variationvVjC
range, and selected correlation coefficiemjsfdr the fork length, total length, and
difference between the two length measurementsHDIér each of the four data
sets examined.

Data Set
Variable  Statistic WDFW87  NWIFC87 WDFW94 WDFW95
Fork Length n 3,240 98 203 377
(FL) X 71.1 67.4 49.6 48.4
S 13.1 6.9 8.6 13.7
CVv 18.4% 10.2% 17.3% 28.3%
range 26-120 56.5-94.1 31-70 21 -100
Total Length X 74.9 70.3 53.2 51.4
(TL) S 13.3 6.8 9.1 14.1
CVv 17.7% 9.6% 17.1% 27.4%
range 27 -130 59.7-97.5 34-75 23 - 103
DIFF X 3.81 2.93 3.54 2.96
S 1.11 0.74 0.89 0.95
CVv 29.0% 25.2% 25.0% 32.0%
range 1-10 0.95-5.72 1-6 1-6
FL, TL r 0.997 0.994 0.997 0.998
FL, DIFF r 0.113 -0.242 0.524 0.376

Table 2. Mean and standard deviation of total lerf@L) for specified intervals of the fork
length (FL) data, all data sets combined.

Fork Length Category (cm) Mean TL Standard Deviation Sample Size
35<FL<40 40.1 2.02 131
40 < FL< 50 49.6 3.15 267
50 < FL< 60 59.5 2.95 824
60 < FL< 70 69.5 3.12 910
70 <FL< 80 79.3 3.09 891

10
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Figure 1. Comparison of fork length frequencies for eadchefour data sets analyzed.
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Less than 5% of the data points are in the smallestldogth category, therefore, we feel the

influence of these observations on the error vaeisstcucture is minimal. Based upon the
strong linear correlation between FL and TL, a vigx@mination of the data, the relatively

constant standard deviation of TL throughout the four &legories > 40 cm, and the results
of the homogeneity of variance tests, we concludeditheds reasonable to assume that the
FL:TL data have a normally distributed error variartcecture.

The assumption of normally distributed error variancéswad us to use analysis of
covariance to compare the FL:TL relationships amoedgdhr data sets without transforming
the data. The ANCOVA of the restricted range data @&<m< FL < 80 cm) rejected the
hypothesis of equal slopes for the FL:TL relationship@gnthe different data set® <
0.001). Figure 4 shows the four SLR regression lines dstihfieom the data sets. The lines
are not parallel and all four lines intersect at lems¢ other line within the length range
examined. Because of the significant difference inRInd L relationship among the data sets
it is not appropriate to combine them.

We next examined the relationship between FL and Diké-difference between TL and FL).
Because nearly all the data were measured to the heare®IFF took on a limited number
of values at each FL value. We calculated the meaf GtFeach one cm interval of FL (the
NWIFC87 measurements were rounded to the nearest whplenchplotted these (Figure 5).
Mean DIFF generally increased as FL increased but agpeareach a plateau near the end of
the length range. The dotted lines in Figure 5 illusttiagegeneral form of the trend in our
interpretation. Despite the considerable fluctuatiothefmean values around these lines, we
believe it is clear that two different relationshgsst. Based on this plot, we concluded that
the relationship between FL and TL is different foe targer fork lengths compared to the
smaller lengths. The differences in the distributibhe larger fork lengths among the data
sets (see Figure 1) may be the cause of the differemmesg the slopes for the FL:TL
relationship.

Based on Figure 5, we repeated the ANCOVA with each adtaestricted to fork lengths
from 35 cm to 60 cm. With these reduced data sets theheg®tof parallel slopes was not
rejected by ANCOVA P = 0.383). Since the selection of 60 cm was a somewhataay
choice, we sequentially increased the maximum lengtheoFL range by one cm and repeated
the ANCOVA. The hypothesis of equal slopes among the skeils was not rejected by the
ANCOVA until the range was extended to 35 skl < 68 cm. When the maximum FL in
the range was less than 68 cm the hypothesis of eqpaissiwas notejected P = 0.142).
When the maximum FL in the range wa$8 cm the hypothesis of equal slopes wgscted
(P =0.028). This indicated that the slopes of the relghipnbetween FL and TL for lengths
in the range 35 cm FL < 68 cm were equal among the data sets and the dateoséd be
combined in this length range for analysis.
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An ANCOVA of the data above this range (68 srRL < 80 cm) was not significant eithd? (
= 0.381). This indicated the slopes of the relationshipvden FL and TL for lengths in this
range were equal among the data sets and the data setbe@ambined in this length range
for analysis, also.

In summary, we concluded that the data need to be divitedwo length ranges in order to
combine the four data sets for analysis. Within daalgth range, the hypothesis of equal
slopes among the four data sets for the FL:TL relatipnsould not be rejected. The two
length ranges were: 35 cFL < 68 cm (length range I) and 68 enh-L < 80 cm (length
range Il). The mean, standard deviation, coefficigntvasiation, and selected correlation
coefficients for each data set for these two lengtiges are shown in Table 3. Figure 6 shows
the distribution of fork lengths and the proportional cbation of each data set to these two
ranges of FL data.

Model Selection

We next decided on the most appropriate model to estithaté-L:TL relationship. We
rejected the SLR model because it is not symmetricda®s not account for measurement
error in theY variable. The GMR and EIV models do not have thiesiations. Jolicoeur
(1990) recommends the EIV model when the data have aab&vdng-normal distribution.
Based on our examination of the data, we previouslyleded that it was reasonable to
assume that the FL:TL data have a normally distributeat @ariance structure. The FL:TL
data correspond well to the criteria outlined by Jolitd@990) for selecting the GMR model:
(i) the proposed FL:TL analysis uses the original valugabeX andY data (the data are not
log transformed);i{) the X andY data have a bivariate normal distributiain;) {the sample size
exceeds 20 cases (1,857 cases for the analysis of tHerdovdd lengths and 1,166 cases for
the analysis of the larger fork lengths); ang ( between FL and TL is greater than 0.60 for
both FL ranges (0.994 for length range | and 0.961 for lengiderd). Also, Ricker (1973)
recommended the GMR model for estimating conversiotofacbetween different length
measurements. Therefore, we selected the GMR model.

Geometric Mean Regression Model Parameters:

The parameters of the GMR model were calculated using iengsiat and 2 and the 95%
confidence interval for,Z?GMR was estimated using the methods of Jolicoeur (1990). Separa

models were estimated for the two Ilength ranges detedminby the
ANCOVA: 35 cm< FL <68 cm and 68 cm FL < 80 cm. Within each of these length ranges,
and for the entire restricted range data set (3%=dab. < 80 cm), separate analyses were

conducted for each data set to see if the estimaté&%,g); supported the conclusions of the
ANCOVA.
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Table 3. Sample size (n), mear)( standard deviation (s), coefficient of variationvVjC
and selected correlation coefficients) for the fork length, total length, and
difference between the two length measurementsHDIér each of the four data
sets examined within each of the length ranges iexan

Data Set: 35cm < FL <68 cm
Variable Statistic WDFW87 NWIFC87 WDFW95 WDFW95 Combined

Fork Length n 1,309 62 197 289 1,857
(FL) X 58.4 63.2 50.0 48.1 56.0

S 5.9 3.0 8.1 9.9 8.1

CcVv 10.1% 4.7% 16.3% 20.5% 14.5%

Total Length X 62.1 66.3 53.5 51.1 59.6
(TL) S 6.2 3.0 8.6 10.3 8.5
CVv 9.9% 4.6% 16.1% 20.1% 14.3%

DIFF X 3.69 3.11 3.56 3.01 3.55

S 1.01 0.74 0.88 0.92 1.01

CVv 27.3% 23.8% 24.6% 30.5% 28.3%

FL, TL r 0.987 0.970 0.996 0.997 0.994

FL, DIFF r 0.195 0.002 0.496 0.407 0.311

Data Set: 68cm < FL <£80cm
Variable Statistic WDFW87 NWIFC87 WDFW95 WDFW95 Combined

Fork Length n 1,109 29 1 27 1,166
(FL) X 74.1 72.2 70 72.7 74.0

S 3.7 3.0 3.9 3.7

CVv 5.0% 4.2% 5.4% 5.0%

Total Length X 78.0 74.8 75 76.0 77.9
(TL) s 3.8 3.1 3.8 3.8
CVv 4.9% 4.2% 5.1% 4.9%

DIFF X 3.88 2.65 5 3.26 3.84

S 1.04 0.63 1.32 1.06

CVv 26.9% 23.7% 40.4% 27.7%

FL, TL r 0.962 0.980 0.943 0.961

FL, DIFF r -0.045 0.081 -0.243 -0.030
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The slope estimates for the GMR modé}’G(AR) and 95% confidence interval for each
estimated slope are shown in Figure 7 for each datdesetl{ range: 35 crd FL < 80 cm).
These results support the ANCOVA because the confidenes/al aroundg,r for each

data set does not include the point estimates for ¢pe gif the other data sets (Table 4). This
supports the decision not to combine the four data setssathe entire 35 ceFL < 80 cm
length range.

The results of the GMR analysis of the separate leragitpes are summarized in Figure 8 and
Table 4. For the different data sets, there is coraditke overlap among the 95% confidence

intervals for ,EGMR. The dotted lines in Figure 8 represent ihgm estimate for the data sets

combined over the indicated length range. These valtes@compassed by the 95%
confidence interval of each of the data sets.

The final estimation equatiohfor converting FL to TL are, for 35 ceFL < 68 cm:

TL =1023+ (1045-L) 1[3
and for 68 cnx FL <80 cm:
TL =1488+ (LO32FL). [4]

Because the GMR model is symmetrickirandY, the TL to FL parameters can be estimated
from the above equations by solving for FL. If

TL = & +(BFL)

B) \B
when converting from TL to FL. Therefore, the GM&uations for converting from TL to FL
are, for 37.6 cr& TL < 71.7 cm:

then

FL = (0.957TL) - Q 979

and for 71.7 cr& TL <84 cm:
FL = (0.969TL) - 1442 .

3 Parameter values for these conversion equationspoeted to three significant digits. There is esskyptia
no change in predicted values for FL or TL if four oefsignificant digits are used (all differences are within
+0.02 cm). If two significant digits are used predicted lengften change by 0.10 to 0.30 cm.
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Figure 8. Estimated slope and 95% confidence interval ®GHMIR model for each data set
within the two length ranges. There was only one gdatawith FL> 68 cm for the
WDFW94 data set so no analysis was conducted.
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Table 4. GMR model parameter estimates and 95% confideteeal for ,EGMR for each
length range and data set analyzed.

Data Set Length Range B 95% Con. Int. a
WDFW87 35cm<FL<80cm 1.021 1.017- 1.025 2.408
NWIFC87 " 0.977 0.948 - 1.007 4.484
WDFW94 " 1.058 1.045 - 1.071 0.66(
WDFW95 " 1.030 1.022 - 1.039 1.524
WDFW87 35cm< FL <68 cm 1.047 1.038 - 1.056 0.944
NWIFC87 " 1.031 0.969 - 1.098 1.135
WDFW94 " 1.058 1.044 - 1.071 0.68(
WDFW95 " 1.041 1.032-1.051 1.02(

DataCombined 35cm<FL <68cm 1.045 1.040 - 1.050 1.023
WDFW87 68 cm< FL<80 cm 1.026 1.010 - 1.043 1.923
NWIFC87 " 1.038 0.959 - 1.123 -0.08¢4
WDFW94 na
WDFW95 " 0.974 0.850-1.117 5.136

DataCombined 68cm<FL <£80cm 1.032 1.015-1.048 1.488

% Only one data point so analysis not conducted.
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The estimates for the sIopé@&MR) and intercept € ., ) for all these conversion equations

are significantly different from zerd’(< 0.05). Although omitting the intercept would simplify
the models, we do not feel this is appropriate givensigaificance of the tests of the
hypothesis that the intercept equals zero.

Appendix Table 1 provides a summary of FL-to-TL convessiosing equations 3 and 4 and
compares these new estimates to estimates fromeh®ps PMFC model. As expected, the
PMFC model estimates of TL are larder each FL value (Figure 9). The average difference
between the models is +1.25 cm (range 1.08 cm to 1.43 crienfyth range | (35 cra FL <

68 cm) and +2.03 cm (range 1.08 cm to 2.17 cm) for length ran@® kkm< FL < 80 cm)
with the PMFC model always predicting the larger TL.

Although the estimated slopeﬁa’gMR) for the two FL-to-TL conversion equations are not

significantly different {-test,P > 0.05), we recommend that separate conversion equéagons
used for each fork length range. The ANCOVA and the coeguaof the slopes for the
individual data sets indicate that the sets should nebb®ined across the entire 35 sriL

< 80 cm length range. Table 5 compares the predicted @otgthl for larger FL values using
the conversion equation for length range | to the vatwedicted for the conversion equation
for length range 1. The TL values predicted from the &guoapecific for larger fork lengths
(equation 4) are about 0.5 cm smaller than the TL valuedigbed by the equation for the
smaller fork lengths (equation 3).

Table 5. Comparison of predicted total lengths from tMRG-L-to-TL equations for length
ranges | (35 cre FL <68 cm) and 1l (68 crd FL < 80 cm).

Fork Length (cm) Predicted TL (cm) Predicted TL (cm)
Equation 3 Equation 4
70 74.17 73.73
75 79.40 78.89
80 84.62 84.05
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DISCUSSION

The recommended conversion equations will result ingdgto the parameters used in fishery
regulation assessment models. For example, the 1993 TreatyArea 3/4/4B chinook
fishery required a minimum total length of 22 inches. sTi&icurrently represented as a 51.3
cm fork length based upon the PMFC model. The new csioveequations result in a 52.5
cm fork length. Changes in model parameters, simildhége, should improve the models’
ability to accurately project the actual impacts of psgubfishery regulations.

In addition, the effectiveness of the current sizetdinm some fisheries may need to be
reassessed if the size limit was based upon the PMikQefogth to total length conversion.
Minimum size limits may need to be lowered to achigneedesired management objectives.

The new conversions presented in this report will gl®va consistent means to convert
between fork length and total length for fishery managelMvashington. The conversions are
based on data collected using consistent measuring techiniqliée estimation method

employed provides symmetric conversion formulas that fak® account errors in both

measurements.
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Appendix Table 1. Comparison of fork length (FL) to totahgth (TL) conversions
between the GMR model and the PMFC model.

GMR Model PMFC Model
FL (cm) TL (cm) TL (cm)
35 37.60 38.69
36 38.64 39.74
37 39.69 40.80
38 40.73 41.85
39 41.78 42.91
40 42.82 43.97
41 43.87 45.02
42 44.91 46.08
43 45.96 47.14
44 47.00 48.19
45 48.05 49.25
46 49.09 50.30
47 50.14 51.36
48 51.18 52.42
49 52.23 53.47
50 53.27 54.53
51 54.32 55.59
52 55.36 56.64
53 56.41 57.70
54 57.45 58.75
55 58.50 59.81
56 59.54 60.87
57 60.59 61.92
58 61.63 62.98
59 62.68 64.04
60 63.72 65.09
61 64.77 66.15
62 65.81 67.20
63 66.86 68.26
64 67.90 69.32
65 68.95 70.37
66 69.99 71.43
67 71.04 72.49
68 71.6¢ 73.5¢
69 72.70 74.60
70 73.73 75.65
71 74.76 76.71
72 75.79 77.77
73 76.82 78.82
74 77.86 79.88
75 78.89 80.94
76 79.92 81.99
77 80.95 83.05
78 81.98 84.10
79 83.02 85.16
80 84.05 86.22
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