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ABSTRACT 
 
Length analyses of Pacific salmon (Oncorhynchus spp.) on the west coast of North America 
typically rely on fork length (FL) measurements.  Conversely, size limits for many salmon 
fisheries are specified in terms of total length (TL).  The use of total length in fishery 
regulations has two ramifications:  (1) results from analyses of sample data must be converted 
to total length prior to implementation as regulations; and (2) fishery size limits must be 
converted to fork length prior to analysis by models which predict the effect of proposed 
management regimes upon fish stocks.  Accurate formulas for converting from FL to TL, and 
from TL to FL, are required by fishery managers. 
 
This study uses fork length and total length data for chinook salmon (O. tshawytscha) 
collected by the Washington Department of Fish and Wildlife and the Northwest Indian 
Fisheries Commission to estimate the relationships between these two measures of length.  
Three models were considered for estimating the conversion formulas:  simple linear 
regression, geometric mean regression, and an errors-in-variables model.   The geometric 
mean regression model is the method of choice in this study because the results are symmetric 
and the model accounts for errors in both variables.  The geometric mean regression model is 
shown to be a special case of an errors-in-variables model. 
 
Analysis of covariance found that the relationship between fork length and total length was 
significantly different among the four data sets analyzed when the entire range of length data 
was considered (35 cm ≤ FL ≤ 80 cm).  Our analyses determined that if the data were divided 
into two length ranges, the hypothesis of equal slopes for the FL:TL relationship among the 
data sets could not be rejected.  The two length ranges were: (1) 35 cm ≤ FL < 68 cm; and 
(2) 68 cm ≤ FL ≤ 80 cm. 
 
The following relationships, based on the geometric mean regression model, for converting 
from fork length to total length, or total length to fork length, are recommended. 
 
When converting from FL to TL, for lengths in the range of  35 cm ≤ FL < 68 cm: 

TL FL= +1023 1045. ( . )  
and for lengths in the range of 68 cm ≤ FL ≤ 80 cm: 

TL FL= +1 1032.488 ( . ) . 
 
When converting from TL to FL, for lengths in the range of  37 cm ≤ TL < 72 cm: 

FL TL= −( . ) .0 957 0 979  
and for lengths in the range of 72 cm ≤ TL ≤ 84 cm: 

FL TL= −( . ) .4420 969 1 . 
 
These conversions necessitate changes in the parameters used in fishery regulation assessment 
models.  Also, the effectiveness of the current size limits in some fisheries may need to be 
reassessed if the size limit was based upon previous fork length to total length conversion 
models. 
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INTRODUCTION 
 
Minimum and maximum size limits are frequently used in fisheries management to regulate the 
catch.  Selection of a size limit may be based upon length-age relationships, length-weight 
relationships, length histograms, or other analyses of length data.  The fork length (FL) is the 
preferred measurement standard for Pacific salmon (Oncorhynchus spp.) due to the ease with 
which it may be measured (PSC 1989) and its reduced sensitivity, relative to the total length, 
to the effects of caudal fin fraying and erosion (Bagenal 1978). 
 
Salmon fisheries under the jurisdiction of the Pacific Fishery Management Council (PFMC), 
and state and tribal salmon fisheries in Washington, Oregon, and California have size limits 
specified in total length (TL).  Because total lengths are used in fishery regulations, the results 
from analyses of sample data must often be converted to total length prior to implementation.  
Also, fishery size limits in total length must be converted to fork length prior to analysis by 
models that predict the effects of proposed management regimes upon fish stocks.   
 
Formulas which accurately convert fork length to total length (and total length to fork length) 
are necessary for accurate modeling of fisheries with length-based retention regulations.  
Fishery managers in Washington State have not agreed on a length conversion formula for 
chinook salmon (O. tshawytscha).  One of the current conversion formulas used is based on a 
simple linear regression and data collected from the Washington coastal troll fishery in 1953 
[Appendix 1 in Reed (1972)1].  This conversion formula is thought to overestimate total length 
because the total length was collected by forcing the caudal peduncle down so that the tip of 
the caudal fin was aligned with a meter stick (Dr. S. Moore, Washington Department of Fish 
and Wildlife, personal communication).  More fork length and total length data have been 
collected during the past decade.  For these data, samplers consistently measured total length 
with the tail in its natural position.  This paper analyzes these new data and evaluates three 
different linear statistical models for their effectiveness in describing the relationship between 
fork length and total length (FL:TL relationship).  
 

                                                        
1  This work was reported by the Pacific Marine Fisheries Commission (PMFC) and is subsequently referred to 
as the PMFC model. 
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METHODS 
 
The data consisted of pairs of length measurements from individual fish.  Each measurement 
pair consisted of a fork length and a total length measurement.  Four data sets were analyzed.  
Descriptions of each data set and the abbreviation used to refer to each set subsequently in the 
report follow:  
 

Set 1. Data collected by the Washington Department of Fish and Wildlife (WDFW) 
in January through December of 1987, consisting of 3,273 length 
measurement pairs from chinook salmon collected during surveys of 
recreational hook-and-line fisheries in Puget Sound (abbreviated as 
WDFW87);  

Set 2. Data collected by the Northwest Indian Fisheries Commission (NWIFC) in 
March 1987, consisting of 98 length measurement pairs from chinook salmon 
harvested with troll gear by treaty Indians at Port Angeles and Neah Bay 
(abbreviated as NWIFC87); 

Set 3. Data collected by WDFW in September and October of 1994, consisting of 
203 length measurement pairs from chinook salmon landed during purse seine 
test fisheries for coho salmon (O. kisutch) at Apple Cove in Puget Sound 
(abbreviated as WDFW94); and 

Set 4. Data collected by WDFW in September and October of 1995, consisting of 
378 length measurement pairs from chinook salmon landed during purse seine 
test fisheries for coho salmon at Apple Cove and Edward’s Point in Puget 
Sound (abbreviated as WDFW95). 

 
 
Initial Data Analysis 
 
All measurements made by the WDFW were in centimeters (cm) and recorded to the nearest 
cm.  The measurements made by the NWIFC were in inches and recorded to the nearest 1/8′′: 
these measurements were converted to cm prior to analysis.  Before analysis, each data set was 
screened for possible recording errors.  All data pairs where the fork length was greater than 
the total length were considered recording errors and removed from the data.  The difference 
between total length and fork length (TL - FL) was calculated for each data pair.  Differences 
between total length and fork length greater than 10 cm (TL - FL > 10 cm) were extremely 
rare in the data (15 pairs out of 3,952 total pairs).  These pairs were considered outliers and 
were removed from the data, also.   
 
After we had screened each data set, the mean, standard deviation, coefficient of variation, and 
range (minimum value to maximum value) for each set were calculated for the variables of 
interest:  fork length, total length, and difference between the two (TL - FL = DIFF).  In 
addition, the parametric Pearson’s correlation coefficient (r) was calculated between FL and 
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TL and between FL and DIFF.  Length frequency histograms were used to compare the fork 
length data from each data set.  Frequency histograms were also used to compare the 
distribution of values for DIFF from each data set. 
 
 
Comparison of Data Sets 
 
Since the biological relationship between fork length and total length is not well understood, 
we limited the range of lengths analyzed to those of interest for fishery management.  This 
prevents lengths outside the range of interest from influencing the functional relationship 
estimated between fork length and total length and should allow for more accurate estimates of 
the FL:TL relationship for lengths within the range.  Current length limits range from about 35 
cm to 80 cm.  Therefore, all data pairs with a fork length less than 35 cm or greater than 80 cm 
were removed from each data set.  Scatter plots were used to examine the bivariate 
relationship between the different variables in the reduced data sets. 
 
A determination of the error structure of the data was required to select the proper model for 
analysis.  If the variance structure is homoscedastic (the variance of the Y data is constant over 
the range of the X data) the error structure is normal.  If the variance structure is 
heteroscedastic (the variance of the Y data is not constant over the range of the X data) the 
error structure is usually log-normal.  We divided the FL data in the range from 35 cm to 80 
cm into one 5-cm and four 10-cm intervals.  The mean and standard deviation of the 
corresponding total lengths within each of the length intervals was calculated to examine the 
variance structure of the FL:TL relationship.  Box’s test and Levene’s test for the homogeneity 
of variance (Milliken and Johnson 1992) were conducted on the total length data within the 
fork length categories.  Both of these tests are robust to departures from normality (Milliken 
and Johnson 1992). 
 
Our first step in examining the FL:TL relationship was to determine if it was appropriate to 
combine the four data sets.  If the relationship between FL and TL is different among the four 
data sets it is not appropriate to combine them to estimate an overall FL:TL relationship.  We 
used a simple linear model and analysis of covariance (ANCOVA) to determine if the FL:TL 
relationships were similar among the four data sets.  The assumptions required for the simple 
linear regression model are described in the next section of this report.  Use of the linear 
regression model allowed us to use analysis of covariance to simultaneously compare the 
FL:TL relationships among the data sets (Milliken and Johnson 1996).  We followed 
procedures outlined by Milliken and Johnson (1996) to conduct the ANCOVA.  We are not 
aware of similar procedures that could be used with the other models examined in this report.  
Because the linear model fit the data well, we do not expect that its use introduced any errors 
into our analysis or biased our conclusions. 
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Models 
 
Three models were considered for estimating the FL-to-TL and TL-to-FL conversion 
equations: 
 

• simple linear regression (SLR) model; 
• geometric mean regression (GMR) model; and 
• errors-in-variables (EIV) model. 

 
Schnute (1984) identified three fundamental properties that should be satisfied by a model 
expressing the relationship between bivariate data:  They are: 
 

• the results should symmetric in X and Y;  
• the results should be scale independent; and 
• the results should be robust to clusters of samples toward either end of the 

distribution. 
 
A regression-type model is symmetric in X and Y if the estimated slope for the regression of Y 
on X is the reciprocal of the slope estimate for the X-on-Y regression.  For example, a FL can 
be converted to TL using the results of a FL-on-TL regression.  This predicted TL can then be 
converted back to a FL using the results of the TL-on-FL regression.  In a symmetric model, 
this predicted FL will be the FL that was initially used in the FL-on-TL regression.  If the 
model is not symmetric, the predicted FL will be different from the original FL. 
 
A model is scale independent when the slope estimated from the X-Y data is not influenced by 
the measurement units of the data.  For example, if a model is scale independent then a 
regression calculated from FL:TL data measured in centimeters will result in the same 
estimated slope if the data are converted to inches before analysis. 
 
Frequently when naturally occurring populations are randomly sampled there is a concentration 
of observations near one end of the frequency distribution of the observations and 
progressively fewer observations toward the other end, or there may be several modes in the 
frequency distribution scattered throughout the range of data (Ricker 1973).  A good X-on-Y 
regression model should be robust (not heavily influenced) to these concentrations of 
observations. 
 
The major assumptions required for each model and a discussion of the suitability of each 
model to the FL-to-TL conversion problem follow. 
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Simple Linear Regression Model: 
 
The simple linear regression model is the most widely used method because of ease of use and 
familiarity to most people.  The parameters of the simple linear regression model are usually 
estimated by the method of least squares (Draper and Smith 1981).  Because the methods used 
to estimate the parameters of a SLR are described in detail in most introductory statistical texts 
they are not presented here.  The four major assumptions required for a SLR model are 
(Draper and Smith 1981): 
 

1. The relationship between the X (independent) and Y (dependent) variables can be 
described by a linear function; 

2. For any value of X, the corresponding Y values are independently and normally 
distributed and this distribution has been sampled at random; 

3. The variance of Y is the same for any value of X, i.e., the variances are 
homoscedastic; and  

4. The independent X variable is measured without error relative to the dependent Y 
variable. 

 
There are two primary criticisms of simple linear regression as a model for length measurement 
conversions.  The first is the SLR model is not symmetric in X and Y (Ricker 1973; Schnute 
1984).  The SLR model is not symmetric because it assigns a special role to one variate.  If a 
given FL is converted to TL with a FL-on-TL regression and subsequently the TL predicted 
from this regression is used in a TL-on-FL regression, the new predicted FL will usually not be 
the one originally input into the FL-on-TL regression.  The predicted FL will be larger than the 
original FL if it was less than the mean FL of the original FL data used to estimate the 
predictive regression, or it will be less than the original FL if it was greater than the mean FL 
of the original data (Ricker 1973).  Although the SLR model is scale independent (Schnute 
1984), it is not robust to clusters of samples toward either end of the distribution (Ricker 
1973). 
 
The other major criticism of the SLR model concerns the fourth assumption (above): the 
independent X variable is assumed to be measured without error relative to the dependent Y 
variable.  Obviously in the FL:TL relationship we expect that there is some error in the 
measurement of both lengths.  We have no basis to assume that fork length is measured 
without error with respect to TL (or vice versa).  If measurement error is present in the X 
variable (as well as the Y variable), then least-squares regression estimates of the model 
parameters (the slope and the intercept) and the estimates of the variance of these parameters 
will be biased (Fuller 1987).   
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Geometric Mean Regression Model: 
 
The geometric mean regression was advocated by Ricker (1973) as a method to incorporate 
measurement errors in the X variable into regressions.  The GMR model is also referred to as 
the standard (or reduced) major axis method (Jolicoeur 1975).  Ricker (1973) stated that the 
GMR model is superior to the SLR model when estimating conversion factors between 
different length measurements because “its estimate has no systematic bias related to the range 
of lengths represented in the sample”.  This is in contrast to a simple linear regression whose 
slope estimate tends to increase as the range of lengths in the sample increases.   
 
The slope of the GMR regression is estimated by the ratio of the sample standard deviations of 
the X and Y variables (Ricker 1973).  Specifically, the slope (β) is estimated by (Ricker 1973): 
 

$ )β GMR r
Y=









 (sign

sample standard deviation for  

sample standard deviation for  X
                                    [1] 

 
and the intercept (α) by: 
 

$ ( $ )α βGMR GMRY X= −                                                        [2] 

 
where sign r is the sign (±) of the parametric correlation coefficient between X and Y and X  
and Y  are the sample means.  Jolicoeur (1990) describes how to construct confidence intervals 

for $β GMR .  The major assumptions of the GMR model proposed by Ricker are (Ricker 1973; 

Schnute 1984): 
 

1. The relationship between the X and Y variables can be described by a linear 
function; 

2. The X and Y data are mutually independent pairs from a bivariate normal 
distribution that has been sampled at random; and 

3. There is measurement error present in both the X and Y variables. 
 
The GMR model has two advantages relative to the SLR model.  First, the GMR model is 
symmetric in X and Y (Ricker 1973; Schnute 1984).  Secondly, the GMR model is robust, 
relative to the SLR model, to clusters of observations in the frequency distributions of the data 
(Ricker 1973).  The GMR model is also scale independent (Kimura 1992). 
 
However, the GMR model “has been the center of significant controversy in the literature” 
(Kimura 1992).  [Also see, Jolicoeur (1975), Ricker (1975), Schnute (1984), and Jolicoeur 
(1990) for additional discussions of this controversy.]  One criticism of the GMR model is that 
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its slope coefficient is inconsistent2 and this inconsistency can result in bias when measurement 
error is large and the estimated slope is small (Sprent 1969).  Also, Jolicoeur (1975; 1990) 
demonstrates that the confidence interval for the slope estimated from GMR can be too narrow 
in many situations, especially when there is not a strong relationship between X and Y.  
Jolicoeur (1990) recommends that the GMR should be restricted to those cases when: 
 

• the analysis is restricted to the original values of the X and Y data (the data are not 
log transformed); 

• the X and Y data have a bivariate normal distribution; 
• sample size is at least 20 cases; and 
• r between X and Y is at least 0.60. 

 
 
Errors-In-Variables Model: 
 
Kimura (1992) presents a good discussion of the application of errors-in-variables models to 
allometric problems similar to the FL-to-TL conversion problem.  EIV models are a class of 
models that incorporate error in the measurement of both the X and Y data.  It should be noted 
that the GMR model (or standard major axis method) is a special case of the linear functional 
regression models applicable to errors-in-variables models (Kimura 1992).  Models of this type 
all require an assumption about the measurement variances of the X and Y data.  Either the 
measurement variances are assumed to be known or the ratio of the measurement error 
variances (called λ) is assumed known.  The parameter λ is defined by: 

λ σ
σ

= Y

X

2

2
 

where σ Y
2  and σ X

2  are the measurement error variances for the Y and X data, respectively.  In 

the bivariate situation, knowledge of λ allows an unbiased estimator of β to be constructed and 
the application of normal theory for hypothesis testing and confidence interval construction 
(Fuller 1987).  In the GMR model, λ is assumed to be approximated by the ratio of the sample 
variances of the Y and X data (Jolicoeur 1990; Kimura 1992).  The assumptions for the EIV 
model are identical to those of the GMR model (remember that the GMR model is a member 
of the same class of models). 
 
The EIV model we examined is often referred to as the ordinary major axis method (Jolicoeur 
1975, 1990; Kimura 1992).  For this model, λ is assumed equal to 1.0.  We feel that this is a 
reasonable assumption for the FL:TL data as both lengths were measured in the same units 
(primarily cm) and the differences between the two measurements were relatively small (1 to 
10 cm) so the measurements are equal in magnitude.  Therefore, we expect that the two types 

                                                        
2  A method of estimation is consistent when the estimated value becomes equal to the population value as the 
sample size approaches the population size. 
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of measurements have approximately equal measurement error.  Kimura (1992) states that in 
many cases of allometry it is reasonable to assume λ = 1.0. 
 
Fuller (1987) and Jolicoeur (1990) present the maximum likelihood estimate for the slope of 
this EIV model ($β EIV ): 
 

$ ( ) [( ) ] /

β λ λ λ
EIV

Y X Y X XY

XY

s s s s s

s
=

− + − +2 2 2 2 2 2 1 24

2
 

 
where, sY

2  = the sample variance for the Y data; 

 sX
2

 = the sample variance for the X data; and 
 sXY = the sample covariance for the X-Y data. 
 

Fuller (1987) and Jolicoeur (1990) describe how to construct confidence intervals for $β EIV .  

Jolicoeur (1990) recommends this EIV model (ordinary major axis method) when the X-Y data 
appear to follow a bivariate log-normal distribution.  This model has been criticized as being 
scale dependent.  However, Kimura (1992) has shown that when λ is properly rescaled before 
checking the model for scale independence, this form of the EIV model is scale independent. 
 
Schnute (1984) proposed a series of EIV models appropriate for bivariate data that follow a 
log-normal distribution.  These models require no explicit assumption about λ.  From our 
analyses, we concluded that the FL:TL data more closely followed a bivariate normal rather 
than a bivariate log-normal distribution.  Therefore, these models were not investigated further. 
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RESULTS 
 
Initial Data Analysis 
 
The WDFW87 data set had the highest incidence of points considered recording errors (FL 
recorded as ≥ TL) or as outliers (DIFF > 10 cm).  About one percent of the data pairs were 
removed from the WDFW87 data set:  18 data pairs had FL ≥ TL and 15 data pairs had DIFF 
> 10 cm.  No data pairs were removed from the NWIFC87 and WDFW94 data sets.  One data 
pair was removed from the WDFW95 data set because the FL was ≥ TL. 
 
The mean (x ), standard deviation (s), coefficient of variation (CV), range, and selected 
correlation coefficients (r) for each data set for the three variables of interest are shown in 
Table 1.  The WDFW87 data set has the largest mean values for all three variables.  The 
WDFW95 data set had the largest coefficient of variation for all three variables.  The 
WDFW87 data set had a broad distribution of fork lengths and no pronounced peak to its 
distribution (Figure 1).  The NWIFC87 and WDFW94 data sets had narrower distributions of 
fork lengths and had clear peaks to their frequency distributions.  The WDFW95 data set was 
skewed to the right with peak frequencies in the smaller fork length ranges but with an 
extended distribution into the larger fork lengths (Figure 1).  The WDFW87 and WDFW94 
data sets had similar distributions for DIFF (Figure 2): both data sets had peaks in the 3 cm < 
DIFF ≤ 4 cm category.  The other two data sets (NWIFC87 and WDFW95) had a peak in the 
2 cm < DIFF ≤ 3 cm category. 
 
 
Comparison of Data Sets 
 
There was a strong linear relationship between FL and TL in all four data sets (see r values in 
Table 1).  For the comparison of data sets, the data were restricted to the range of lengths  of  

interest,  35  cm  ≤  FL  ≤  80 cm.  The  scatter plot of the combined data in this range 
demonstrates the strong linear relationship between FL and TL (Figure 3).  For this restricted 
range of length data, r values between FL and TL ranged from 0.990 to 0.997 for the 
individual data sets and r for the data combined was 0.996. 
 
The spread of the data in Figure 3 indicates a normal error variance structure for the FL:TL 
data.  The data are tightly clustered in the vertical (Y-axis) direction throughout the range of 
the FL data.  Although the spread of the TL values along the Y-axis expands slightly as the 
values of FL increase, the  increase  in  spread  is relatively small.  Excluding the smallest length 
category (35 ≤ FL ≤ 40 cm), the standard deviations of TL in the other four FL categories 
range from 2.95 to 3.15 (Table 2).  When the smallest length category is included in the 
analysis, both Box’s and Levene’s tests for the homogeneity of variances are rejected (both P < 
0.001).  When the smallest length category is omitted from the analysis, neither test for the 
homogeneity of variances is rejected (both P > 0.100). 
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Table 1. Sample size (n), mean (x ), standard deviation (s), coefficient of variation (CV), 
range, and selected correlation coefficients (r) for the fork length, total length, and 
difference between the two length measurements (DIFF) for each of the four data 
sets examined. 

 

  Data Set 
Variable Statistic WDFW87 NWIFC87 WDFW94 WDFW95 

      
Fork Length n 3,240 98 203 377 

(FL) x  71.1 67.4 49.6 48.4 
 s 13.1 6.9 8.6 13.7 
 CV 18.4% 10.2% 17.3% 28.3% 
 range 26 - 120 56.5 - 94.1 31 - 70 21 - 100 
      

Total Length x  74.9 70.3 53.2 51.4 
(TL) s 13.3 6.8 9.1 14.1 

 CV 17.7% 9.6% 17.1% 27.4% 
 range 27 - 130 59.7 - 97.5 34 - 75 23 - 103 
      

DIFF x  3.81 2.93 3.54 2.96 
 s 1.11 0.74 0.89 0.95 
 CV 29.0% 25.2% 25.0% 32.0% 
 range 1 - 10 0.95 - 5.72 1 - 6 1 - 6 

FL, TL r 0.997 0.994 0.997 0.998 
FL, DIFF r 0.113 -0.242 0.524 0.376 

 
 
 
 
Table 2. Mean and standard deviation of total length (TL) for specified intervals of the fork 

length (FL) data, all data sets combined. 
 

Fork Length Category (cm) Mean TL Standard Deviation Sample Size 
    

35 ≤ FL ≤ 40 40.1 2.02 131 
40 < FL ≤ 50 49.6 3.15 267 
50 < FL ≤ 60 59.5 2.95 824 
60 < FL ≤ 70 69.5 3.12 910 
70 < FL ≤ 80 79.3 3.09 891 
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Figure 1. Comparison of fork length frequencies for each of the four data sets analyzed. 
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Figure 2. Comparison of the frequencies of the differences between the total length and the 

fork length for data pairs in each data set analyzed. 
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Less than 5% of the data points are in the smallest fork length category, therefore, we feel the 
influence of these observations on the error variance structure is minimal.  Based upon the 
strong linear correlation between FL and TL, a visual examination of the data, the relatively 
constant standard deviation of TL throughout the four FL categories > 40 cm, and the results 
of the homogeneity of variance tests, we concluded that it was reasonable to assume that the 
FL:TL data have a normally distributed error variance structure. 
 
The assumption of normally distributed error variances allowed us to use analysis of 
covariance to compare the FL:TL relationships among the four data sets without transforming 
the data.  The ANCOVA of the restricted range data sets (35 cm ≤ FL ≤ 80 cm) rejected the 
hypothesis of equal slopes for the FL:TL relationship among the different data sets (P < 
0.001).  Figure 4 shows the four SLR regression lines estimated from the data sets.  The lines 
are not parallel and all four lines intersect at least one other line within the length range 
examined.  Because of the significant difference in the FL:TL relationship among the data sets 
it is not appropriate to combine them. 
 
We next examined the relationship between FL and DIFF (the difference between TL and FL).  
Because nearly all the data were measured to the nearest cm, DIFF took on a limited number 
of values at each FL value.  We calculated the mean DIFF at each one cm interval of FL (the 
NWIFC87 measurements were rounded to the nearest whole cm) and plotted these (Figure 5).  
Mean DIFF generally increased as FL increased but appeared to reach a plateau near the end of 
the length range.  The dotted lines in Figure 5 illustrate the general form of the trend in our 
interpretation.  Despite the considerable fluctuation of the mean values around these lines, we 
believe it is clear that two different relationships exist.  Based on this plot, we concluded that 
the relationship between FL and TL is different for the larger fork lengths compared to the 
smaller lengths.  The differences in the distribution of the larger fork lengths among the data 
sets (see Figure 1) may be the cause of the differences among the slopes for the FL:TL 
relationship. 
 
Based on Figure 5, we repeated the ANCOVA with each data set restricted to fork lengths 
from 35 cm to 60 cm.  With these reduced data sets the hypothesis of parallel slopes was not 
rejected by ANCOVA (P = 0.383).  Since the selection of 60 cm was a somewhat arbitrary 
choice, we sequentially increased the maximum length of the FL range by one cm and repeated 
the ANCOVA.  The hypothesis of equal slopes among the data sets was not rejected by the 
ANCOVA until the range was extended to 35 cm ≤ FL ≤ 68 cm.  When the maximum FL in 
the range was less than 68 cm the hypothesis of equal slopes was not rejected (P = 0.l42).  
When the maximum FL in the range was ≥ 68 cm the hypothesis of equal slopes was rejected 
(P = 0.028).  This indicated that the slopes of the relationship between FL and TL for lengths 
in the range 35 cm ≤ FL < 68 cm were equal among the data sets and the data sets could be 
combined in this length range for analysis. 
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An ANCOVA of the data above this range (68 cm ≤ FL ≤ 80 cm) was not significant either (P 
= 0.381).  This indicated the slopes of the relationship between FL and TL for lengths in this 
range were equal among the data sets and the data sets could be combined in this length range 
for analysis, also. 
 
In summary, we concluded that the data need to be divided into two length ranges in order to 
combine the four data sets for analysis.  Within each length range, the hypothesis of equal 
slopes among the four data sets for the FL:TL relationship could not be rejected.  The two 
length ranges were:  35 cm ≤ FL < 68 cm (length range I) and 68 cm ≤ FL ≤ 80 cm (length 
range II).  The mean, standard deviation, coefficient of variation, and selected correlation 
coefficients for each data set for these two length ranges are shown in Table 3.  Figure 6 shows 
the distribution of fork lengths and the proportional contribution of each data set to these two 
ranges of FL data. 
 
 
Model Selection 
 
We next decided on the most appropriate model to estimate the FL:TL relationship.  We 
rejected the SLR model because it is not symmetric and does not account for measurement 
error in the Y variable.  The GMR and EIV models do not have these limitations.  Jolicoeur 
(1990) recommends the EIV model when the data have a bivariate log-normal distribution. 
Based on our examination of the data, we previously concluded that it was reasonable to 
assume that the FL:TL data have a normally distributed error variance structure.  The FL:TL 
data correspond well to the criteria outlined by Jolicoeur (1990) for selecting the GMR model: 
(i) the proposed FL:TL analysis uses the original values of the X and Y data (the data are not 
log transformed); (ii) the X and Y data have a bivariate normal distribution; (iii) the sample size 
exceeds 20 cases (1,857 cases for the analysis of the smaller fork lengths and 1,166 cases for 
the analysis of the larger fork lengths); and (iv) r between FL and TL is greater than 0.60 for 
both FL ranges (0.994 for length range I and 0.961 for length range II).  Also, Ricker (1973) 
recommended the GMR model for estimating conversion factors between different length 
measurements.  Therefore, we selected the GMR model. 
 
Geometric Mean Regression Model Parameters: 
 
The parameters of the GMR model were calculated using equations 1 and 2 and the 95% 

confidence interval for $β GMR  was estimated using the methods of Jolicoeur (1990).  Separate 

models were estimated for the two length ranges determined by the 
ANCOVA: 35 cm ≤ FL < 68 cm and 68 cm ≤ FL ≤ 80 cm.  Within each of these length ranges, 
and for the entire restricted range data set (35 cm ≤ FL ≤ 80 cm), separate analyses were 

conducted for each data set to see if the estimates of $β GMR  supported the conclusions of the 

ANCOVA. 
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Table 3. Sample size (n), mean (x ), standard deviation (s), coefficient of variation (CV),  
and selected correlation coefficients (r) for the fork length, total length, and 
difference between the two length measurements (DIFF) for each of the four data 
sets examined within each of the length ranges examined. 

 

  Data Set:  35 cm ≤≤≤≤ FL < 68 cm 
Variable Statistic WDFW87 NWIFC87 WDFW95 WDFW95 Combined 

       
Fork Length n 1,309 62 197 289 1,857 

(FL) x  58.4 63.2 50.0 48.1 56.0 
 s 5.9 3.0 8.1 9.9 8.1 
 CV 10.1% 4.7% 16.3% 20.5% 14.5% 
       

Total Length x  62.1 66.3 53.5 51.1 59.6 
(TL) s 6.2 3.0 8.6 10.3 8.5 

 CV 9.9% 4.6% 16.1% 20.1% 14.3% 
       

DIFF x  3.69 3.11 3.56 3.01 3.55 
 s 1.01 0.74 0.88 0.92 1.01 
 CV 27.3% 23.8% 24.6% 30.5% 28.3% 

FL, TL r 0.987 0.970 0.996 0.997 0.994 
FL, DIFF r 0.195 0.002 0.496 0.407 0.311 

       
  Data Set:  68 cm ≤≤≤≤ FL ≤≤≤≤ 80 cm 

Variable Statistic WDFW87 NWIFC87 WDFW95 WDFW95 Combined 
       

Fork Length n 1,109 29 1 27 1,166 
(FL) x  74.1 72.2 70 72.7 74.0 

 s 3.7 3.0  3.9 3.7 
 CV 5.0% 4.2%  5.4% 5.0% 
       

Total Length x  78.0 74.8 75 76.0 77.9 
(TL) s 3.8 3.1  3.8 3.8 

 CV 4.9% 4.2%  5.1% 4.9% 
       

DIFF x  3.88 2.65 5 3.26 3.84 
 s 1.04 0.63  1.32 1.06 
 CV 26.9% 23.7%  40.4% 27.7% 

FL, TL r 0.962 0.980  0.943 0.961 
FL, DIFF r -0.045 0.081  -0.243 -0.030 
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The slope estimates for the GMR model ($β GMR ) and 95% confidence interval for each 

estimated slope are shown in Figure 7 for each data set (length range: 35 cm ≤ FL ≤ 80 cm).  

These results support the ANCOVA because the confidence interval around $β GMR  for each 

data set does not include the point estimates for the slope of the other data sets (Table 4).  This 
supports the decision not to combine the four data sets across the entire  35 cm ≤ FL ≤ 80 cm 
length range. 
 
The results of the GMR analysis of the separate length ranges are summarized in Figure 8 and 
Table 4.  For the different data sets, there is considerable overlap among the 95% confidence 

intervals for $β GMR .  The dotted lines in Figure 8 represent the $β GMR  estimate for the data sets 

combined over the indicated length range.  These values are encompassed by the 95% 
confidence interval of each of the data sets. 
 
The final estimation equations3 for converting FL to TL are,  for 35 cm ≤ FL < 68 cm: 
 

TL FL= +1023 1045. ( . )                                              [3] 

and for 68 cm ≤ FL ≤ 80 cm: 
TL FL= +1 1032.488 ( . ) .                                            [4] 

 
Because the GMR model is symmetric in X and Y, the TL to FL parameters can be estimated 
from the above equations by solving for FL.  If 
 

TL FL= +$ ( $ )α β  

then 

FL
TL=








 −









$

$

$β
α
β

 

 
when converting from TL to FL.  Therefore, the GMR equations for converting from TL to FL 
are, for 37.6 cm ≤ TL < 71.7 cm: 
 

FL TL= −( . ) .0 957 0 979  

and for 71.7 cm ≤ TL ≤ 84 cm: 
FL TL= −( . ) .4420 969 1 . 

 

                                                        
3  Parameter values for these conversion equations are reported to three significant digits.  There is essentially 
no change in predicted values for FL or TL if four or five significant digits are used (all differences are within 
±0.02 cm).  If two significant digits are used predicted lengths often change by 0.10 to 0.30 cm. 
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Figure 8. Estimated slope and 95% confidence interval for the GMR model for each data set 

within the two length ranges.  There was only one data pair with FL ≥ 68 cm for the 
WDFW94 data set so no analysis was conducted. 

35 cm   ≤≤≤≤   FL   <  <  <  <   68 cm

0.95

0.97

0.99

1.01

1.03

1.05

1.07

1.09

1.11

WDFW87 NWIFC87 WDFW94 WDFW95

Data  Set

Sl
op

e 
 E

st
im

at
e

β = 1.045

 



 23 

 
 
 
Table 4. GMR model parameter estimates and 95% confidence interval for $β GMR  for each 

length range and data set analyzed. 
 

Data Set Length Range $β  95% Con. Int. $α  

     
WDFW87 35 cm ≤ FL ≤ 80 cm 1.021 1.017- 1.025  2.408 
NWIFC87 ′′ 0.977 0.948 - 1.007  4.484 
WDFW94 ′′ 1.058 1.045 - 1.071  0.660 
WDFW95 ′′ 1.030 1.022 - 1.039  1.524 

     
WDFW87 35 cm ≤ FL < 68 cm 1.047 1.038 - 1.056  0.948 
NWIFC87 ′′ 1.031 0.969 - 1.098  1.135 
WDFW94 ′′ 1.058 1.044 - 1.071  0.680 
WDFW95 ′′ 1.041 1.032 - 1.051  1.020 

Data Combined 35 cm ≤≤≤≤ FL < 68 cm 1.045 1.040 - 1.050  1.023 
     

WDFW87 68 cm ≤ FL ≤ 80 cm 1.026 1.010 - 1.043  1.923 
NWIFC87 ′′ 1.038 0.959 - 1.123 -0.089 
WDFW94 ′′a    
WDFW95 ′′ 0.974 0.850 - 1.117  5.136 

Data Combined 68 cm ≤≤≤≤ FL ≤≤≤≤ 80 cm 1.032 1.015 - 1.048  1.488 
 
   a  Only one data point so analysis not conducted. 
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The estimates for the slope ($β GMR ) and intercept ($α GMR ) for all these conversion equations 

are significantly different from zero (P ≤ 0.05).  Although omitting the intercept would simplify 
the models, we do not feel this is appropriate given the significance of the tests of the 
hypothesis that the intercept equals zero. 
 
Appendix Table 1 provides a summary of FL-to-TL conversions using equations 3 and 4 and 
compares these new estimates to estimates from the previous PMFC model.  As expected, the 
PMFC model estimates of TL are larger for each FL value (Figure 9).  The average difference 
between the models is +1.25 cm (range 1.08 cm to 1.43 cm) for length range I (35 cm ≤ FL < 
68 cm) and +2.03 cm (range 1.08 cm to 2.17 cm) for length range II (68 cm ≤ FL ≤ 80 cm) 
with the PMFC model always predicting the larger TL.   
 

Although the estimated slopes ($β GMR ) for the two FL-to-TL conversion equations are not 

significantly different (t-test, P > 0.05), we recommend that separate conversion equations be 
used for each fork length range.  The ANCOVA and the comparison of the slopes for the 
individual data sets indicate that the sets should not be combined across the entire 35 cm ≤ FL 
≤ 80 cm length range.  Table 5 compares the predicted total length for larger FL values using 
the conversion equation for length range I to the values predicted for the conversion equation 
for length range II.  The TL values predicted from the equation specific for larger fork lengths 
(equation 4) are about 0.5 cm smaller than the TL values predicted by the equation for the 
smaller fork lengths (equation 3). 
 
 
 
Table 5. Comparison of predicted total lengths from the GMR FL-to-TL equations for length 

ranges I (35 cm ≤ FL < 68 cm) and II (68 cm ≤ FL ≤ 80 cm). 
 

Fork Length (cm) Predicted TL (cm) 
Equation 3 

Predicted TL (cm) 
Equation 4 

   
70 74.17 73.73 
75 79.40 78.89 
80 84.62 84.05 
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DISCUSSION 

 
The recommended conversion equations will result in changes to the parameters used in fishery 
regulation assessment models.  For example, the 1993 Treaty Troll Area 3/4/4B chinook 
fishery required a minimum total length of 22 inches.  This is currently represented as a 51.3 
cm fork length based upon the PMFC model.  The new conversion equations result in a 52.5 
cm fork length.  Changes in model parameters, similar to these, should improve the models’ 
ability to accurately project the actual impacts of proposed fishery regulations. 
 
In addition, the effectiveness of the current size limits in some fisheries may need to be 
reassessed if the size limit was based upon the PMFC fork length to total length conversion.  
Minimum size limits may need to be lowered to achieve the desired management objectives.   
 
The new conversions presented in this report will provide a consistent means to convert 
between fork length and total length for fishery managers in Washington.  The conversions are 
based on data collected using consistent measuring techniques.  The estimation method 
employed provides symmetric conversion formulas that take into account errors in both 
measurements.   
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Appendix Table 1. Comparison of fork length (FL) to total length (TL) conversions 
between the GMR model and the PMFC model. 

 
 GMR Model: PMFC Model: 

FL (cm) TL (cm) TL (cm) 
   

35 37.60 38.69 
36 38.64 39.74 
37 39.69 40.80 
38 40.73 41.85 
39 41.78 42.91 
40 42.82 43.97 
41 43.87 45.02 
42 44.91 46.08 
43 45.96 47.14 
44 47.00 48.19 
45 48.05 49.25 
46 49.09 50.30 
47 50.14 51.36 
48 51.18 52.42 
49 52.23 53.47 
50 53.27 54.53 
51 54.32 55.59 
52 55.36 56.64 
53 56.41 57.70 
54 57.45 58.75 
55 58.50 59.81 
56 59.54 60.87 
57 60.59 61.92 
58 61.63 62.98 
59 62.68 64.04 
60 63.72 65.09 
61 64.77 66.15 
62 65.81 67.20 
63 66.86 68.26 
64 67.90 69.32 
65 68.95 70.37 
66 69.99 71.43 
67 71.04 72.49 
68 71.66 73.54 
69 72.70 74.60 
70 73.73 75.65 
71 74.76 76.71 
72 75.79 77.77 
73 76.82 78.82 
74 77.86 79.88 
75 78.89 80.94 
76 79.92 81.99 
77 80.95 83.05 
78 81.98 84.10 
79 83.02 85.16 
80 84.05 86.22 

 


